Free Novel Read

The Inevitable Page 4


  And they’d be right. Because from our perspective now, the greatest online things of the first half of this century are all before us. All these miraculous inventions are waiting for that crazy, no-one-told-me-it-was-impossible visionary to start grabbing the low-hanging fruit—the equivalent of the dot-com names of 1984.

  Because here is the other thing the graybeards in 2050 will tell you: Can you imagine how awesome it would have been to be an innovator in 2016? It was a wide-open frontier! You could pick almost any category and add some AI to it, put it on the cloud. Few devices had more than one or two sensors in them, unlike the hundreds now. Expectations and barriers were low. It was easy to be the first. And then they would sigh. “Oh, if only we realized how possible everything was back then!”

  So, the truth: Right now, today, in 2016 is the best time to start up. There has never been a better day in the whole history of the world to invent something. There has never been a better time with more opportunities, more openings, lower barriers, higher benefit/risk ratios, better returns, greater upside than now. Right now, this minute. This is the moment that folks in the future will look back at and say, “Oh, to have been alive and well back then!”

  The last 30 years has created a marvelous starting point, a solid platform to build truly great things. But what’s coming will be different, beyond, and other. The things we will make will be constantly, relentlessly becoming something else. And the coolest stuff of all has not been invented yet.

  Today truly is a wide-open frontier. We are all becoming. It is the best time ever in human history to begin.

  You are not late.

  2

  COGNIFYING

  It is hard to imagine anything that would “change everything” as much as cheap, powerful, ubiquitous artificial intelligence. To begin with, there’s nothing as consequential as a dumb thing made smarter. Even a very tiny amount of useful intelligence embedded into an existing process boosts its effectiveness to a whole other level. The advantages gained from cognifying inert things would be hundreds of times more disruptive to our lives than the transformations gained by industrialization.

  Ideally, this additional intelligence should be not just cheap, but free. A free AI, like the free commons of the web, would feed commerce and science like no other force we can imagine and would pay for itself in no time. Until recently, conventional wisdom held that supercomputers would be the first to host this artificial mind, and then perhaps we’d get mini minds at home, and then soon enough we’d add consumer models to the heads of our personal robots. Each AI would be a bounded entity. We would know where our thoughts ended and theirs began.

  However, the first genuine AI will not be birthed in a stand-alone supercomputer, but in the superorganism of a billion computer chips known as the net. It will be planetary in dimensions, but thin, embedded, and loosely connected. It will be hard to tell where its thoughts begin and ours end. Any device that touches this networked AI will share—and contribute to—its intelligence. A lonely off-the-grid AI cannot learn as fast, or as smartly, as one that is plugged into 7 billion human minds, plus quintillions of online transistors, plus hundreds of exabytes of real-life data, plus the self-correcting feedback loops of the entire civilization. So the network itself will cognify into something that uncannily keeps getting better. Stand-alone synthetic minds are likely to be viewed as handicapped, a penalty one might pay in order to have AI mobility in distant places.

  When this emerging AI arrives, its very ubiquity will hide it. We’ll use its growing smartness for all kinds of humdrum chores, but it will be faceless, unseen. We will be able to reach this distributed intelligence in a million ways, through any digital screen anywhere on earth, so it will be hard to say where it is. And because this synthetic intelligence is a combination of human intelligence (all past human learning, all current humans online), it will be difficult to pinpoint exactly what it is as well. Is it our memory, or a consensual agreement? Are we searching it, or is it searching us?

  The arrival of artificial thinking accelerates all the other disruptions I describe in this book; it is the ur-force in our future. We can say with certainty that cognification is inevitable, because it is already here.

  * * *

  • • •

  Two years ago I made the trek to the sylvan campus of the IBM research labs in Yorktown Heights, New York, to catch an early glimpse of this rapidly appearing, long overdue arrival of artificial intelligence. This was the home of Watson, the electronic genius that conquered Jeopardy! in 2011. The original Watson is still here—it’s about the size of a bedroom, with 10 upright refrigerator-shaped machines forming the four walls. The tiny interior cavity gives technicians access to the jumble of wires and cables on the machines’ backs. It is surprisingly warm inside, as if the cluster were alive.

  Today’s Watson is very different. It no longer exists solely within a wall of cabinets but is spread across a cloud of open-standard servers that run several hundred “instances” of the AI at once. Like all things cloudy, Watson is served to simultaneous customers anywhere in the world, who can access it using their phones, their desktops, or their own data servers. This kind of AI can be scaled up or down on demand. Because AI improves as people use it, Watson is always getting smarter; anything it learns in one instance can be quickly transferred to the others. And instead of one single program, it’s an aggregation of diverse software engines—its logic-deduction engine and its language-parsing engine might operate on different code, on different chips, in different locations—all cleverly integrated into a unified stream of intelligence.

  Consumers can tap into that always-on intelligence directly, but also through third-party apps that harness the power of this AI cloud. Like many parents of a bright mind, IBM would like Watson to pursue a medical career, so it should come as no surprise that the primary application under development is a medical diagnosis tool. Most of the previous attempts to make a diagnostic AI have been pathetic failures, but Watson really works. When, in plain English, I give it the symptoms of a disease I once contracted in India, it gives me a list of hunches, ranked from most to least probable. The most likely cause, it declares, is giardia—the correct answer. This expertise isn’t yet available to patients directly; IBM provides Watson’s medical intelligence to partners like CVS, the retail pharmacy chain, helping it develop personalized health advice for customers with chronic diseases based on the data CVS collects. “I believe something like Watson will soon be the world’s best diagnostician—whether machine or human,” says Alan Greene, chief medical officer of Scanadu, a startup that is building a diagnostic device inspired by the Star Trek medical tricorder and powered by a medical AI. “At the rate AI technology is improving, a kid born today will rarely need to see a doctor to get a diagnosis by the time they are an adult.”

  Medicine is only the beginning. All the major cloud companies, plus dozens of startups, are in a mad rush to launch a Watson-like cognitive service. According to the analysis firm Quid, AI has attracted more than $18 billion in investments since 2009. In 2014 alone more than $2 billion was invested in 322 companies with AI-like technology. Facebook, Google, and their Chinese equivalents, TenCent and Baidu, have recruited researchers to join their in-house AI research teams. Yahoo!, Intel, Dropbox, LinkedIn, Pinterest, and Twitter have all purchased AI companies since 2014. Private investment in the AI sector has been expanding 70 percent a year on average for the past four years, a rate that is expected to continue.

  One of the early stage AI companies Google purchased is DeepMind, based in London. In 2015 researchers at DeepMind published a paper in Nature describing how they taught an AI to learn to play 1980s-era arcade video games, like Video Pinball. They did not teach it how to play the games, but how to learn to play the games—a profound difference. They simply turned their cloud-based AI loose on an Atari game such as Breakout, a variant of Pong, and it learned on its own how to keep increasing its sco
re. A video of the AI’s progress is stunning. At first, the AI plays nearly randomly, but it gradually improves. After a half hour it misses only once every four times. By its 300th game, an hour into it, it never misses. It keeps learning so fast that in the second hour it figures out a loophole in the Breakout game that none of the millions of previous human players had discovered. This hack allowed it to win by tunneling around a wall in a way that even the game’s creators had never imagined. At the end of several hours of first playing a game, with no coaching from the DeepMind creators, the algorithms, called deep reinforcement machine learning, could beat humans in half of the 49 Atari video games they mastered. AIs like this one are getting smarter every month, unlike human players.

  Amid all this activity, a picture of our AI future is coming into view, and it is not the HAL 9000—a discrete machine animated by a charismatic (yet potentially homicidal) humanlike consciousness—or a Singularitan rapture of superintelligence. The AI on the horizon looks more like Amazon Web Services—cheap, reliable, industrial-grade digital smartness running behind everything, and almost invisible except when it blinks off. This common utility will serve you as much IQ as you want but no more than you need. You’ll simply plug into the grid and get AI as if it was electricity. It will enliven inert objects, much as electricity did more than a century past. Three generations ago, many a tinkerer struck it rich by taking a tool and making an electric version. Take a manual pump; electrify it. Find a hand-wringer washer; electrify it. The entrepreneurs didn’t need to generate the electricity; they bought it from the grid and used it to automate the previously manual. Now everything that we formerly electrified we will cognify. There is almost nothing we can think of that cannot be made new, different, or more valuable by infusing it with some extra IQ. In fact, the business plans of the next 10,000 startups are easy to forecast: Take X and add AI. Find something that can be made better by adding online smartness to it.

  An excellent example of the magic of adding AI to X can be seen in photography. In the 1970s I was a travel photographer hauling around a heavy bag of gear. In addition to a backpack with 500 rolls of film, I carried two brass Nikon bodies, a flash, and five extremely heavy glass lenses that weighed over a pound each. Photography needed “big glass” to capture photons in low light; it needed light-sealed cameras with intricate marvels of mechanical engineering to focus, measure, and bend light in thousandths of a second. What has happened since then? Today my point-and-shoot Nikon weighs almost nothing, shoots in almost no light, and can zoom from my nose to infinity. Of course, the camera in my phone is even tinier, always present, and capable of pictures as good as my old heavy clunkers. The new cameras are smaller, quicker, quieter, and cheaper not just because of advances in miniaturization, but because much of the traditional camera has been replaced by smartness. The X of photography has been cognified. Contemporary phone cameras eliminated the layers of heavy glass by adding algorithms, computation, and intelligence to do the work that physical lenses once did. They use the intangible smartness to substitute for a physical shutter. And the darkroom and film itself have been replaced by more computation and optical intelligence. There are even designs for a completely flat camera with no lens at all. Instead of any glass, a perfectly flat light sensor uses insane amounts of computational cognition to compute a picture from the different light rays falling on the unfocused sensor. Cognifying photography has revolutionized it because intelligence enables cameras to slip into anything (in a sunglass frame, in a color on clothes, in a pen) and do more, including calculate 3-D, HD, and many other options that earlier would have taken $100,000 and a van full of equipment to do. Now cognified photography is something almost any device can do as a side job.

  A similar transformation is about to happen for every other X. Take chemistry, another physical endeavor requiring laboratories of glassware and bottles brimming with solutions. Moving atoms—what could be more physical? By adding AI to chemistry, scientists can perform virtual chemical experiments. They can smartly search through astronomical numbers of chemical combinations to reduce them to a few promising compounds worth examining in a lab. The X might be something low-tech, like interior design. Add utility AI to a system that matches levels of interest of clients as they walk through simulations of interiors. The design details are altered and tweaked by the pattern-finding AI based on customer response, then inserted back into new interiors for further testing. Through constant iterations, optimal personal designs emerge from the AI. You could also apply AI to law, using it to uncover evidence from mountains of paper to discern inconsistencies between cases, and then have it suggest lines of legal arguments.

  The list of Xs is endless. The more unlikely the field, the more powerful adding AI will be. Cognified investments? Already happening with companies such as Betterment or Wealthfront. They add artificial intelligence to managed stock indexes in order to optimize tax strategies or balance holdings between portfolios. These are the kinds of things a professional money manager might do once a year, but the AI will do every day, or every hour.

  Here are other unlikely realms waiting to be cognitively enhanced:

  Cognified music—Music can be created in real time from algorithms, employed as the soundtrack for a video game or a virtual world. Depending on your actions, the music changes. Hundreds of hours of new personal music can be written by the AI for every player.

  Cognified laundry—Clothes that tell the washing machines how they want to be washed. The wash cycle would adjust itself to the contents of each load as directed by the smart clothes.

  Cognified marketing—The amount of attention an individual reader or watcher spends on an advertisement can be multiplied by their social influence (how many people followed them and what their influence was) in order to optimize attention and influence per dollar. Done at the scale of millions, this is a job for AI.

  Cognified real estate—Matching buyers and sellers via an AI that can prompt “renters who liked this apartment also liked these . . .” It could then generate a financing package that worked for your particular circumstances.

  Cognified nursing—Patients outfitted with sensors that track their bio markers 24 hours a day can generate highly personalized treatments that are adjusted and refined daily.

  Cognified construction—Imagine project management software that is smart enough to take into account weather forecasts, port traffic delays, currency exchange rates, accidents, in addition to design changes.

  Cognified ethics—Robo cars need to be taught priorities and behavior guidelines. The safety of pedestrians may precede the safety of drivers. Anything with some real autonomy that depends on code will also require smart ethical code as well.

  Cognified toys—Toys more like pets. Furbies were primitive compared with the intense attraction that a smart petlike toy will invoke from children. Toys that can converse are lovable. Dolls may be the first really popular robots.

  Cognified sports—Smart sensors and AI can create new ways to score and referee sporting games by tracking and interpreting subtle movements and collisions. Also, highly refined statistics can be extracted from every second of each athlete’s activity to create elite fantasy sports leagues.

  Cognified knitting—Who knows? But it will come!

  Cognifying our world is a very big deal, and it’s happening now.

  * * *

  • • •

  Around 2002 I attended a private party for Google—before its IPO, when it was a small company focused only on search. I struck up a conversation with Larry Page, Google’s brilliant cofounder. “Larry, I still don’t get it. There are so many search companies. Web search, for free? Where does that get you?” My unimaginative blindness is solid evidence that predicting is hard, especially about the future, but in my defense this was before Google had ramped up its ad auction scheme to generate real income, long before YouTube or any other major acquisitions. I was not the only avid user of its sea
rch site who thought it would not last long. But Page’s reply has always stuck with me: “Oh, we’re really making an AI.”

  I’ve thought a lot about that conversation over the past few years as Google has bought 13 other AI and robotics companies in addition to DeepMind. At first glance, you might think that Google is beefing up its AI portfolio to improve its search capabilities, since search constitutes 80 percent of its revenue. But I think that’s backward. Rather than use AI to make its search better, Google is using search to make its AI better. Every time you type a query, click on a search-generated link, or create a link on the web, you are training the Google AI. When you type “Easter Bunny” into the image search bar and then click on the most Easter Bunny–looking image, you are teaching the AI what an Easter Bunny looks like. Each of the 3 billion queries that Google conducts each day tutors the deep-learning AI over and over again. With another 10 years of steady improvements to its AI algorithms, plus a thousandfold more data and a hundred times more computing resources, Google will have an unrivaled AI. In a quarterly earnings conference call in the fall of 2015, Google CEO Sundar Pichai stated that AI was going to be “a core transformative way by which we are rethinking everything we are doing. . . . We are applying it across all our products, be it search, be it YouTube and Play, etc.” My prediction: By 2026, Google’s main product will not be search but AI.

  This is the point where it is entirely appropriate to be skeptical. For almost 60 years, AI researchers have predicted that AI is right around the corner, yet until a few years ago it seemed as stuck in the future as ever. There was even a term coined to describe this era of meager results and even more meager research funding: the AI winter. Has anything really changed?